ENGG MATHEMATICS –II (21003)

LIST OF FORMULAE

UNIT -I-CIRCLES

- 1. The equation of the circle with **centre** (**h,k**) and radius 'r'is $(x h)^2 + (y k)^2 = r^2$ (centre –radius form).
- 2. The equation of the circle with centre (0,0) or originand radius 'r' is $x^2 + y^2 = r^2$
- 3. The distance between the point (x_1, y_1) and (x_2, y_2) is

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

- 4. The **general** circle equation $isx^2+y^2+2gx+2fy+c=0$, where $g = \frac{co-efficient\ of\ 'x'}{2}$, $f = \frac{co-efficient\ of\ 'y'}{2}$.
- 5. Centre (c) = (-g, -f), radius (r) = $\sqrt{g^2 + f^2 + c}$.
- 6. The equation of the circle described on the line joining the points (x_1, y_1) and (x_2, y_2) as a diameter $(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$.

LENGTH OF TANGENT:

- 7. The **length of the tangent** at (x_1, y_1) on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is $\sqrt{(x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c)}$.
- 8. The equation of the tangent at (x_1, y_1) on the circlex²+y²+2gx+2fy+c = 0 is $xx_1+yy_1+g(x+x_1)+(y+y_1)+c=0$.
- 9. The length of the tangent at (x_1, y_1) on the circle $x^2+y^2=r^2$ is $xx_1+yy_1=r^2$.

UNIT –II- FAMILY OF CIRCLES

CONCENTRIC CTRCLES:

- 10. The **general** circle equation is $\mathbf{x}^2 + \mathbf{y}^2 + 2\mathbf{g}\mathbf{x} + 2\mathbf{f}\mathbf{y} + \mathbf{c} = \mathbf{0}$, then the concentric at a point $(\mathbf{x}_1, \mathbf{y}_1)$ is $\mathbf{x}^2 + \mathbf{y}^2 + 2\mathbf{g}\mathbf{x} + 2\mathbf{f}\mathbf{y} + \mathbf{k} = \mathbf{0}$.
- 11.If C_1 and C_2 are the centres of two circles with radius R_1 and R_2 then $D=C_1C_2=R_1+R_2$ then the circles touch each other **externally**.then the co-ordinates of

P is
$$\left(\frac{mx_2+nx_1}{m+n}, \frac{ny_2+ny_1}{m+n}\right)$$
, where m= r₁ and n= r₂.

12.If C_1 and C_2 are the centres of two circles with radius R_1 and R_2 then $D=C_1C_2=R_1-R_2$ then the circles touch each other **internally**.then the co-ordinates of

P is
$$\left(\frac{mx_2-nx_1}{m-n}, \frac{ny_2-ny_1}{m-n}\right)$$
, where m= r₁ and n= r₂.

- 13. The equation of the **common tangent is** S_1 - $S_2 = 0$. where S_1 - 1^{st} circle, $S_2 2^{nd}$ circle.
- 14. The condition for two circles cut orthogonally, $2gg_1+2ff_1=c+c_1$.

PROPERTIES OF LIMITS:

- 15. Addition rule : $\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.
- 16. Subtraction rule : $\lim_{x\to a} [f(x) g(x)] = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$.
- 17.**Product rule**: $\lim_{x\to a} [f(x) * g(x)] = \lim_{x\to a} f(x) * \lim_{x\to a} g(x)$.
- 18. Division rule : $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$
- 19.If $f(x) \le g(x)$ then $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$.

$$20.\lim_{x\to a}\frac{x^n-a^n}{x-a}=na^{n-1}.$$

$$21.\lim_{\emptyset\to\mathbf{0}}\frac{\sin\emptyset}{\emptyset}=\mathbf{1}.$$

$$22.\lim_{\phi\to 0}\frac{\sin n\phi}{\phi}=\mathbf{n}.$$

$$23.\lim_{\emptyset\to\mathbf{0}}\frac{\tan\emptyset}{\emptyset}=\mathbf{1}.$$

$$24.\lim_{\emptyset\to\mathbf{0}}\frac{tann\emptyset}{\emptyset}=\mathbf{n}.$$

25. To find the $\lim_{x\to\infty} f(x)$, put $x = \frac{1}{y}$ and after simplification $\lim_{x\to 0} f(x)$.

DIFFERENTIATION OF STANDARD FUNCTIONS:

S.NO	FUNCTION = Y	$DIFFERENTIATION = \frac{32}{dx}$
1	50 m ≥ 2	FUATIO TL _{n=1}
2	$\sqrt{\frac{n}{x}}$	1.X
2	*	$- \frac{2 \overline{\sqrt{x}}}{\overline{z} \sqrt{x}}$
3	$\frac{1}{x^n}$	$\frac{\frac{1}{2}\sqrt{x}}{\frac{1}{2}\sqrt{n+1}}$
4		==+ ==x 3
5	$\frac{x^n}{e^x}$ $\log xx$	9 ^x 1 x ps
6	log x sin x	
7	sin x x cos x x	$\frac{x}{\cos x}$ $\sin x$
8	cos ac	$\frac{\cos n}{-\sin x}$ $\frac{\cos n}{x}$
9	tan x xc	-sec² x cosec²x
10	tan x x cot x x sec x x cot x -cosec ² x	sec ² x -cosec ² x sec x tan x -cosec ² xe c ² x
11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-cosec*ase*x -sec x tan x an x cosec x co ac cot x ac
12	Constant (k)	0
13	$\frac{\cos_{\min} x}{\operatorname{nst}_{-1} t(k)}$ $\sin^{-2} x$	$\sqrt{\frac{1}{1}} = \frac{1}{x^2}$
14	$ \begin{array}{c c} sin^{-1} & x \\ \hline -1 \\ cos^{-1} x & x \end{array} $	$ \frac{\overline{1} - \overline{x}}{\sqrt{\overline{1} - \overline{x}}} $ $ \sqrt{\overline{1} - \overline{x}} \overline{\overline{2}} $
14	cos x -1 tan - x	71 = 5 - 1 1 + x ²
16	$\frac{\tan^{-1} x}{\cot^{-1} x}$	$ \frac{\overline{1}}{1} = \overline{x} $ $ \frac{\overline{1}}{1} + \overline{x}\overline{2} $
17	cot -: x 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} x & \overline{x} & \overline{1} \\ x & \sqrt{x^2} & \overline{1} \end{array} $

- 26. Addition rule : $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$.
- 27. Subtraction rule : $\frac{d}{dx}[f(x) g(x)] = \frac{d}{dx}f(x) \frac{d}{dx}g(x)$.
- 28. Product rule : (i) $\frac{d}{dx}[UV] = U\frac{dV}{dx} + V\frac{dU}{dx}$.

$$(ii)\frac{d}{dx}[UVV] = VW\frac{dU}{dx} + WU\frac{dV}{dx} + UV\frac{dW}{dx}.$$

- 29. Division rule: $\frac{d}{dx} \left[\frac{U}{V} \right] = \frac{V \frac{dU}{dx} U \frac{dV}{dx}}{V^2}$.
- $30.\frac{d}{dx}[Kf(x)] = K\frac{d}{dx}f(x).$

- $\frac{\text{UNIT} \text{III-DIFFERENTIATION METHODS}}{31.\text{Function of function}} : \frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dx}.$
- 32. Chain rule : $\frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dv} * \frac{dv}{dx}$.
- 33. Parametric functions: $\frac{dy}{dx} = \left(\frac{\frac{dy}{d\phi}}{\frac{dx}{dx}}\right)$.

UNIT -IV- APPLICATION OF DIFFERENTIATION-I

- 34. Area of circle: πr^2 .
- 35. Area of square : a^2 .
- 36. Area of rectangle :(lb).
- 37. Voiume of cone : $\frac{1}{3}\pi r^2 h$.
- 38. Volume of sphere : $\frac{4}{3}\pi r^3$.

39. Volum of cube : a^3 .

40. Surface area of sphere: $4 \pi r^2$.

- 41. Velocity (V) = $\frac{ds}{dt}$.
- 42. Acceleration (A) = $\frac{dV}{dt} = \frac{d^2S}{dt^2}$.
- 43. Slope of the tangent (m) = $\left(\frac{dy}{dx}\right)_{(x1,y1)}$
- 44. Slope of the normal $(-1/m) = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x1,y1)}}$.
- 45. Equation of the tangent at (x1, y1) is $y-y_1 = m(x-x_1)$.
- 46. Equation of the normal at (x1, y1) is $y-y_1 = -1/m (x-x_1)$.

<u>UNIT-V- APPLICATION OF DIFFERENTIATION-II</u>

- 47. Minimum condition : (i) $\frac{dy}{dx} = 0$ and (ii) $\frac{d^2y}{dx^2} = +$ ve value.
- 48. **Maximum condition**: (i) $\frac{dy}{dx} = 0$ and (ii) $\frac{d^2y}{dx^2} = -$ ve value.
- 49. **Homogeneous function**: a function f(x, y) of two variables x and y is said to be of degree 'n' if $f(tx, ty) = t^n(x, y)$.
- 50.**Euler's theorem**: if 'f' is a **homogeneous function** of degree 'n' in x and y Then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf$.

